背景
秒杀活动是绝大部分电商选择的低价促销,推广品牌的方式。既可以给平台带来用户量,还可以提高平台知名度。一个好的秒杀系统,可以提高平台系统的稳定性和公平性,获得更好的用户体验,提升平台的口碑,从而提升秒杀活动的最大价值。
本文讨论云数据库Redis版缓存设计高并发的秒杀系统。
秒杀的特征
秒杀活动对稀少或特价的商品进行定时定量售卖,吸引成大量的消费者进行抢购,但又只有少部分消费者可以下单成功。因此,秒杀活动将在一定时间内产生比平时大几十倍倍,上百倍的页面访问流量和下单请求流量。
秒杀活动可以分为3个阶段:
- 秒杀前:用户不断刷新商品详情页,页面请求达到临时开头。
- 秒杀开始:用户点击秒杀按钮,下单请求达到暂时提前。
- 秒杀后:一部分成功下单的用户不断刷新订单或产生退单操作,大部分用户继续刷新商品详情页等待退单机会。
消费者提交的订单,一般做法是利用数据库的行级锁,只有抢到锁的请求可以进行库存查询和下单操作。但是在高并发的情况下,数据库无法承受如此大的请求,往往需要整个服务被阻止,在消费者看来就是服务器停机机。
秒杀系统
利用系统的层次结构,在每个阶段提前重新验证,拦截无效流量,可以减少大量无效的流量涌入数据库。
利用浏览器缓存和CDN抗压静态页面流量
因此,我们需要把秒杀商品详情页与普通的商品详情页分开。关于秒杀商品详情页试图将能静态化的元素静态化处理,除了秒杀按钮需要服务端进行动态判断,其他的静态数据可以缓存在浏览器和CDN上。这样,秒杀前刷新页面导致的流量进入服务端的流量只有很小的一部分。
利用识读分离Redis缓存拦截流量
CDN是第一级流量拦截,第二级流量拦截我们使用支持读写分离的Redis。在这一阶段我们主要读取数据,读取分离Redis能支持高达60万以上qps,完全可以支持需求。
首先通过数据控制模块,提前将秒杀商品缓存到标识符分离Redis,并设置秒杀开始标记如下:
"goodsId_count": 100 //总数 "goodsId_start": 0 //开始标记 "goodsId_access": 0 //接受下单数
- 秒杀开始前,服务重新读取goodsId_Start为0,直接返回未开始。
- 数据控制模块将goodsId_start改为1,标志秒杀开始。
- 服务最大化缓存开始标记位并开始接受请求,并记录到redis中goodsId_access,商品剩余数量为(goodsId_count-goodsId_access)。
- 当接受下单数达到goodsId_count后,继续拦截所有请求,商品剩余数量为0。
可以抛光,最后成功参与下单的请求只有少部分可以被接受。在高并发的情况下,允许稍微多的流量进入。因此可以控制接受下单数的比例。
利用主从版Redis缓存加速库存扣量
成功避免下单后,进入下层服务,开始进行订单信息校验,库存扣量。为了避免直接访问数据库,我们使用主从版Redis来进行库存扣量,主从版Redis提供10万等级的QPS。使用Redis来优化库存查询,提前拦截秒杀失败的请求,将大大提高系统的整体稳定性。
通过数据控制模块提前将库存存入Redis,将每个秒杀商品在Redis中用一个hash结构表示。
"goodsId" : { "Total": 100 "Booked": 100 }
扣量时,服务器通过请求Redis获取下单资格,通过以下lua脚本实现,通过Redis是单线程模型,lua可以保证多个命令的原子性。
local n = tonumber(ARGV[1]) if not n or n == 0 then return 0 end local vals = redis.call("HMGET", KEYS[1], "Total", "Booked"); local total = tonumber(vals[1]) local blocked = tonumber(vals[2]) if not total or not blocked then return 0 end if blocked + n <= total then redis.call("HINCRBY", KEYS[1], "Booked", n) return n; end return 0
先使用SCRIPT LOAD
将lua脚本EVALSHA
预先缓存在Redis,然后调用调用脚本,比直接调用EVAL
节省网络带宽:
redis 127.0.0.1:6379>SCRIPT LOAD "lua code" "438dd755f3fe0d32771753eb57f075b18fed7716" redis 127.0.0.1:6379>EVAL 438dd755f3fe0d32771753eb57f075b18fed7716 1 goodsId 1
秒杀服务通过判断Redis是否返回抢购个数n,即可知道此次请求是否扣量成功。
使用主从版Redis实现简单的消息异步下单入库
如果商品数量减少的时候,直接操作数据库即可。如果秒杀的商品是1万,甚至10万等级,那数据库锁冲突将带来很大的性能优势。。因此,利用消息组件,当秒杀服务将订单信息写入消息变量后,即可认为下单完成,避免直接操作数据库。
消息模块组件依然可以使用Redis实现,在R2中用列表数据结构表示。
```java orderList { [0] = {订单内容} [1] = {订单内容} [2] = {订单内容} ... }
将订单内容写入
```java LPUSH orderList {订单内容}
初步下单模块从Redis中顺序获取订单信息,将订单写入数据库。
```java BRPOP orderList 0
通过使用Redis作为消息收发器,异步处理订单入库,有效的提高了用户的下单完成速度。
数据控制模块管理秒杀数据同步
最开始,利用识别分离Redis进行流量限制,只让部分流量进入下单。对于下单检验失败和退单等情况,需要让更多的流量进来。因此,数据控制模块需要定时将数据库中的数据进行一定的计算,同步到主从版Redis,同时再同步到读写分离的Redis,让更多的流量进来。
总结
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]