前言

还在用keys命令模糊匹配删除数据吗?这就是一颗随时爆炸的炸弹!

Redis中没有批量删除特定前缀key的指令,但我们往往需要根据前缀来删除,那么究竟该怎么做呢?可能你一通搜索后会得到下边的答案

redis-cli --raw keys "ops-coffee-*" | xargs redis-cli del

直接在linux下通过redis的keys命令匹配到所有的key,然后调用系统命令xargs来删除,看似非常完美,实则风险巨大

因为Redis的单线程服务模式,命令keys会阻塞正常的业务请求,如果你一次keys匹配的数量过多或者在del的时候遇到大key,都会直接导致业务的不可用,甚至造成redis宕机的风险

所以我们在生产环境中应当避免使用上边的方法,那有什么优雅的方法来解决呢?SCAN!

SCAN介绍及使用

Redis从2.8版本开始支持scan命令,SCAN命令的基本用法如下:

SCAN cursor [MATCH pattern] [COUNT count]

cursor: 游标,SCAN命令是一个基于游标的迭代器,SCAN命令每次被调用之后,都会向用户返回一个新的游标,用户在下次迭代时需要使用这个新游标作为SCAN命令的游标参数,以此来延续之前的迭代过程,直到服务器向用户返回值为0的游标时,一次完整的遍历过程就结束了

MATCH: 匹配规则,例如遍历以ops-coffee-开头的所有key可以写成ops-coffee-*,中间包含-coffee-的可以写成*-coffee-*

COUNT:  COUNT选项的作用就是让用户告知迭代命令,在每次迭代中应该从数据集里返回多少元素,COUNT只是对增量式迭代命令的一种提示,并不代表真正返回的数量,例如你COUNT设置为2有可能会返回3个元素,但返回的元素数据会与COUNT设置的正相关,COUNT的默认值是10

以下是一个SCAN命令的迭代过程示例:

127.0.0.1:6379> scan 0 MATCH ops-coffee-* 
1) "38"
2) 1) "ops-coffee-25"
 2) "ops-coffee-19"
 3) "ops-coffee-29"
 4) "ops-coffee-10"
 5) "ops-coffee-23"
 6) "ops-coffee-5"
 7) "ops-coffee-14"
 8) "ops-coffee-16"
 9) "ops-coffee-11"
 10) "ops-coffee-15"
 11) "ops-coffee-7"
 12) "ops-coffee-1"
127.0.0.1:6379> scan 38 MATCH ops-coffee-* COUNT 1000
1) "0"
2) 1) "ops-coffee-13"
 2) "ops-coffee-9"
 3) "ops-coffee-21"
 4) "ops-coffee-6"
 5) "ops-coffee-30"
 6) "ops-coffee-20"
 7) "ops-coffee-2"
 8) "ops-coffee-12"
 9) "ops-coffee-28"
 10) "ops-coffee-3"
 11) "ops-coffee-26"
 12) "ops-coffee-4"
 13) "ops-coffee-31"
 14) "ops-coffee-8"
 15) "ops-coffee-22"
 16) "ops-coffee-27"
 17) "ops-coffee-18"
 18) "ops-coffee-24"
 19) "ops-coffee-17"

SCAN命令返回的是一个包含两个元素的数组,第一个数组元素是用于进行下一次迭代的新游标,而第二个数组元素则是一个数组,这个数组中包含了所有被迭代的元素

上面这个例子的意思是扫描所有前缀为ops-coffee-的key

第一次迭代使用0作为游标,表示开始一次新的迭代,同时使用了MATCH匹配前缀为ops-coffee-的key,返回了游标值38以及遍历到的数据

第二次迭代使用的是第一次迭代时返回的游标,也即是命令回复第一个元素的值38,同时通过将COUNT选项的参数设置为1000,强制命令为本次迭代扫描更多元素

在第二次调用SCAN命令时,命令返回了游标0,这表示迭代已经结束,整个数据集已经被完整遍历过了

KEYS命令的时间复杂度为O(n),而SCAN命令会将遍历操作分解成m次时间复杂度为O(1)的操作来执行,从而解决使用keys命令遍历大量数据而导致服务器阻塞的情况,使用下边的指令可以达到优雅删除的目的:

redis-cli --scan --pattern "ops-coffee-*" | xargs -L 2000 redis-cli del

其中xargs -L指令表示xargs一次读取的行数,也就是每次删除的key数量,一次读取太多xargs会报错

其他几种数据结构的优雅删除

类似的SCAN命令,对于Redis不同的数据类型还有另外几个SSCAN、HSCAN和ZSCAN,使用方法类似:

> sscan ops-coffee 0 MATCH v1*
1) "7"
2) 1) "v15"
 2) "v13"
 3) "v12"
 4) "v10"
 5) "v14"
 6) "v1"

与SCAN命令不同的是这几个命令需要多加一个key的参数,例如上边的ops-coffee

对于一个大的set key,借助sscan使用下边的代码可以实现优雅的批量删除:

import redis

def del_big_set_key(key_name):
 r = redis.StrictRedis(host='localhost', port=6379)

 # count表示每次删除的元素数量,这里每次删除300元素
 for key in r.sscan_iter(name=key_name, count=300):
 r.srem(key_name, key)

del_big_set_key('ops-coffee')

对于一个大的hash key,则可借助hscan使用下边的代码实现优雅的删除:

import redis

def del_big_hash_key(key_name):
 r = redis.StrictRedis(host='localhost', port=6379)

 # hscan_iter获取出来的结果是个元祖,下边hdel删除用key[0]取到key
 for key in r.hscan_iter(name=key_name, count=300):
 r.hdel(key_name, key[0])

del_big_hash_key('ops-coffee')

对于大的有序集合的删除就比较简单了,直接根据zremrangebyrank排行范围删除

import redis

def del_big_sort_key(key_name):
 r = redis.StrictRedis(host='localhost', port=6379)

 while r.zcard(key_name) > 0:
 # 判断集合中是否有元素,如有有则删除排行0-99的元素
 r.zremrangebyrank(key_name, 0, 99)

del_big_sort_key('ops-coffee')

big list大列表的删除可以参考上边这个方法,通过llen判断数量,然后ltrim移除范围内的元素,这里不赘述

至此对于Redis的五中数据结构大key的优雅删除就全部实现了,生产环境择优使用~

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。

广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。